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A pas t  study by S ioch i  (1) showed t h a t  the  sur face energy of a polymer 

coat ing  has an impor tant  e f f e c t  on the s t i c k i n g  o f  insec ts  t o  the  surface. 

However, mechanical p roper t i es  o f  polymer coat ings such as e l a s t i c i t y  may a l s o  

be important. A f u r t h e r  study i s  suggested us ing polymer coat ings o f  known 

surface energy and modulus so t h a t  a b e t t e r  understanding o f  the  mechanism o f  

t he  s t i c k i n g  o f  i nsec ts  t o  surfaces can be achieved. As t h e  f i r s t  step f o r  

the study, sur face ana lys i s  and road t e s t s  were performed us ing elastomers 

having d i f f e r e n t  energies and d i f f e r e n t  moduli. The number of sur face insec ts  

s t i c k i n g  on each elastomer was counted and compared from sample t o  sample and 

w i t h  a c o n t r o l  (aluminum). An average he igh t  moment was also ca lcu la ted  and 

comparisons made between samples . 

I I .  Backqround 

When a drop o f  l i q u i d  i s  placed on a so l i d ,  i t  w i l l  e i t h e r  wet the s o l i d  

o r  remain as a drop. 

l i q u i d  and s o l i d  phase (2 )  as shown i n  F igure  1. The angle ( e )  i s  the con tac t  

angle and i s  de f ined as the  angle through the  l i q u i d  between a l i n e  drawn 

tangent t o  the  l i q u i d / s o l i d  contac t  p o i n t  and the s o l i d  surface. 

impor tant  t o  n o t i c e  t h a t  a non-uniform surface, due t o  sur face roughness o r  

surface contamination, can change the contac t  angle. 

The l i q u i d  drop may have a d e f i n i t e  angle between the. 

I t  i s  

A t  equ i l ib r ium,  i n t e r f a c i a l  surface tens ions and the  contac t  angle 8 a re  

r e l a t e d  by the  expression ( 3 )  

ysv - ys1 - Y lv  case = o [ 11 
where ysv , ysl, and ylv are the  i n t e r f a c i a l  sur face tens ions o f  t h e  s o l i d -  

vapor, s o l i d - l i q u i d ,  and l iqu id -vapor  in te r faces ,  respec t ive ly .  

t h a t  t he  d i f fe rence between ysv and ys (sur face tens ion  o f  s o l i d  n o t  i n  

I t  i s  assumed 
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e q u i l i b r i u m  w i t h  vapor) i s  neg l ig ib le .  Th is  equation can be r e - w r i t t e n  ( 3 )  as 

w s l  = ylv (1 t COS e)) c 21 
where W e ,  i s  de f ined as the work o f  adhesion o r  t he  work requ i red  t o  separate 

the  s o l i d  and l i q u i d  phases. As t h e  contac t  angle decreases, the  work o f  

adhesion w i l l  increase. The l i q u i d  i s  sa id  t o  spread a t  a contact  angle o f  0" 

corresponding t o  t h e  maximum work o f  adhesion. 

3 1  

Zisman and co-workers observed t h a t  cos 8 (advancing angle) i s  u s u a l l y  a 

monotomic func t i on  o f  l i q u i d  surface tens ion f o r  a homologous ser ies  o f  

l i q u i d s  ( 3 ) .  A p l o t  of cos 8 versus l i q u i d  surface tens ion  (ylv) f o r  var ious  

s e r i e s  of l i q u i d s  on a given s o l i d  surface i s  ex t rapo la ted  t o  zero 8 

corresponding t o  a c e r t a i n  l i q u i d  surface tension. Zisman c a l l e d  t h i s  

ex t rapo la ted  value o f  l i q u i d  surface tension, t he  c r i t i c a l  surface tens ion o f  

the s o l i d ,  yc. 

The scanning e l e c t r o n  microscope (SEM) i s  w ide ly  used t o  examine surface 

topography ( 3 ) ,  and r e s o l u t i o n  t o  a few nanometers i s  poss ib le ,  depending on 

the na ture  o f  t he  sample and the type o f  microscope. 

diagram o f  an SEM i s  provided i n  Figure 2 (4). 

A s i m p l i f i e d  b lock  

X-ray photoelect ron spectroscopy (XPS) o r  e l e c t r o n  spectroscopy f o r  

chemical ana lys i s  (ESCA) was o r ig ina ted  by Professor  Siegbahn a t  Uppsala 

U n i v e r s i t y  i n  Sweden (4). 

technique which can g i ve  elemental i d e n t i f i c a t i o n  and chemical bond 

in fo rmat ion  o f  s o l i d  surfaces. The s i m p l i f i e d  process f o r  the  ESCA technique 

( 5 )  i s  shown i n  F igure  3, and t h i s  process can be descr ibed (4,5) by the  

fo l low ing  energy-balance equation: 

I t  i s  a sens i t i ve  and q u a n t i t a t i v e  sur face 

hv = Ek + Eb t 9, c31 

where hv i s  t h e  energy o f  the  i nc iden t  x-ray beam, Ek i s  t h e  k i n e t i c  energy o f  

the photoelectron, Eb i s  the  b ind ing energy of the  photoelectron, and 9, i s  
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the  sample work funct ion.  Thus, the i n c i d e n t  x-ray beam with known energy 

photoejects electrons, whose k i n e t i c  energy i s  measured. 

fundamental p roper ty  o f  an element, the  elements present on t h e  sample surface 

can be i d e n t i f i e d  from the ESCA spectra. 

change i n  Eb which i s  a f f e c t e d  by the chemical environment. 

chemical s h i f t s  due t o  the d i f ferences i n  the chemical bonding i n  atoms w i t h i n  

molecules may be detected by ESCA. 

Since the Eb i s  a 

Fur ther  ESCA can detect  a small  

In other  words, 

The atomic concentrat ion o r  atomic f r a c t i o n  (AF) can be ca lcu la ted  by t h e  

equat ions 

AF = X I C X  c41 

X = (A/SW) I (Ek * MFP* X-sec) c 51 
where A and SW are  the area under the photopeak and sweep number, 

respec t ive ly ,  obtained from the  ESCA spectra; MFP and X-sec are t h e  mean f r e e  

path and photoelect ron cross section, respect ive ly .  

A m a t e r i a l  i s  c a l l e d  e l a s t i c  when the deformation produced i n  the body i s  

completely recovered a f t e r  the appl ied f o r c e  i s  removed. 

e l a s t i c i t y  i n  tension, o r  Young's modulus (E)  i s  (2) 

The modulus o f  

E = alr c 61 
where a i s  the  t e n s i l e  s t ress  which i s  the normal f o r c e  a c t i n g  per  u n i t  area 

of a plane, and T i s  the t e n s i l e  s t r a i n  o r  deformation which i s  the  e lognat ion  

per  u n i t  l e n g t h  (2). A b e t t e r  elastomer w i l l  have a h igher  deformat ion o r  a 

smal l e r  modulus . 

111. Experimental 

1. Materials Used 

E i g h t  d i f f e r e n t  types o f  elastomers were studied: f i v e  f luorocarbon 

elastomers (FCE) wi th  d i f f e r e n t  f l u o r i n e  compositions and phys ica l  proper t ies,  

e 
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Neoprene, VitonR, and polyurethane o f  two d i f f e r e n t  thicknesses. 

x 1/16 in.) were received from 3M; two samples (A & B) conta in  69% f l u o r i n e ,  

and the  o the r  samples (C, D Q E )  contain 66% f l uo r ine .  

x 6 x 1/16 in.) were received from duPont. Polyurethane f i l m s  were pressed 

FCE's ( 6  x 6 

Neoprene and V i tonR (6  

from estanes (Goodrich) w i t h  31% hard segments i n  6 x 6 in .  molds w i t h  

thicknesses o f  1/32 in .  and 1/16 in. a t  two d i f f e r e n t  temperatures o f  150°C 

and 190OC. A l l  elastomer sheets were s to red  i n  the dess ica tor  over D r i e r i t e .  

2. Surface Ana lys is  

There was the  d e f i n i t e  p o s s i b i l i t y  o f  contamination on the  elastomer 

surfaces, e s p e c i a l l y  grease from mold re lease agents o r  dur ing  press ing and 

handling. The elastomers were washed i n  a s o l u t i o n  of T ide  and deion ized 

water, and subsequently r i nsed  w i t h  de ion ized water a t  l e a s t  10 times. The 

washed elastomers were d r i e d  over-n ight  i n  a vacuum oven a t  room temperature. 

The unwashed and washed elastomer surfaces were analyzed by contac t  angle 

measurements, SEM and ESCA. 

The contact  angles o f  t h e  washed and unwashed FCE and polyurethane 

samples were measured w i t h  (deionized) water us ing an NRL contac t  angle 

goniometer. Since no i n fo rmat ion  on roughness o r  homogeneity o f  any sample 

sur faces were given, a l a rge  number o f  measurements was necessary t o  reduce 

errors .  F i r s t ,  2 p l  was added t o  the 2 p l  water placed p rev ious l y  and t h e  

contac t  angle was measured. Th is  procedure was repeated two times more so 

t h a t  t he  t o t a l  volume o f  water on the sample surface was 8 p1. con tac t  angles 

were measured a t  a minimum o f  three d i f f e r e n t  l o c a t i o n s  on the  sample surface, 

and the  average contac t  angle was calculated. 

The c r i t i c a l  sur face tens ions f o r  a l l  t he  sample elastomers were 

determined from contac t  angle measurements. A t  l e a s t  e i g h t  - 1 x 1 in.  d i s k s  

were c u t  from each elastomer sheet as we l l  as an aluminum sheet, and prepared 

a 
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as descr bed above. The d r i e d  samples were s to red  i n  sample b o t t l e s  t o  

minimize contamination. The contact angles were measured as before us ing  an 

NRL contac t  angle goniometer with water/e%hanol so lu t io f is .  Pure ethanol and 

deionized water were mixed a t  s i x  d i f f e r e n t  water t o  ethanol volume r a t i o s :  

100/0, 90/10, 70/30, 50/50, 60/40, 70/30, and 80/20. The c r i t i c a l  surface 

tens ion (y,) was obtained from the  p l o t  of cos 8 versus l i q u i d  sur face tens ion 

o f  water/ethanol so lu t ions.  

A d i s k  was punched f r o m  each washed and unwashed samples, and s p u t t e r  

coated w i t h  go ld  by an S P I  s p u t t e r  coater f o r  45 seconds a t  35114. SEM 

photomicrographs o f  both washed and unwashed samples were taken us ing a JEOL 

35C SEM a t  two d i f f e r e n t  magni f icontact  ang le t ions  (x200 and x360). 

The sample surfaces were analyzed q u a n t i t a t i v e l y  us ing  ESCA. A 0.9 x 2.0 

cm d i s k  was taken from each sample, and ESCA spect ra were obta ined a t  90" 

take-o f f  angle us ing a Kratos XSAM 800 x-ray photoelect ron spectrometer w i t h  a 

Mg Ka x-ray source. Washed and unwashed samples o f  polyurethane and FCE (A, B 

& C) were studied. A l l  washed sample surfaces were a l so  analyzed a t  20" take- 

o f f  angle. 

3. C o l l e c t i n g  and Counting Insec ts  

Five-0.75 x 6 in. s t r i p s  o f  each elastomer were washed and d r i e d  as 

To described above, and adhesively bonded t o  1 x 8 in. aluminum s t r i p s .  

remove any grease from the  contac t  surfaces, t he  aluminum surfaces were wiped 

w i t h  "Kemki t'' wetted w i t h  pure acetone and the  elastomer surfaces were washed 

w i t h  pure ethanol . 
Adhesives received from the LORD Chemical Corporat ion were used t o  g lue  

the  elastomer s t r i p s  t o  the  aluminum substrate. 

s t r i p s  were g lued t o  the  aluminum s t r i p s  us ing  Chemlok 

adhesive), and pressed between two aluminum s t r i p s  f o r  a t  l e a s t  30 seconds. 

VitonR, polyurethane and FCE 

(cyanoacry la te R 
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Neoprene s t r i p s  were glued us ing Chemlok 234B (mix ture o f  xylene, 

t r ich lorethy lene,  and carbon b lack) ,  and pressed between two aluminum s t r i p s .  

The ends were cramped and placed i n  the h o t  oven a t  180°F f o r  two hours. 

The sample s t r i p s  prepared as above and f i v e  aluminum s t r i p s  were mounted 

on e i t h e r  aluminum o r  PVC h a l f  c y l i n d e r s  (40 in .  long  and 4 in.  t o  5 in. 

outs ide diameter) as shown i n  the F igure 4. 

on the top  o f  a car, and dr iven  around a loop on Route 618 i n  Gloucester 

County, V i r g i n i a  between 1905 and 2020 hrs  on September 7, 1986 t o  c o l l e c t  

insects.  The insec ts  c o l l e c t e d  on a l l  the samples were counted w i t h  the naked 

eye. The stagnat ion l i n e  i s  the l i n e  which d i v i d e s  the sample surface i n t o  

two, so t h a t  the wings o f  insec ts  on each s ide  o f  the  l i n e  p o i n t  i n  opposi te 

d i rec t ions .  

t h e  surfaces was measured w i t h  a r u l e r ,  and he igh ts  o f  t h e  insec ts  above t h e  

surface were measured w i t h  a Wild-Heerbrugg M-420 microscope. To measure 

height,  the  microscope was focused on the surface o f  the sample. The number 

on the focusing d i a l  was recorded, and the second number was taken a f t e r  the  

These c y l i n d e r s  were then mounted 

The d is tance from the stagnat ion l i n e  t o  the insec ts  c o l l e c t e d  on 

microscope was focused on the uppermost p a r t  o f  the  insect .  

between these two numbers was taken as the he igh t  o f  an insect .  The average 

h e i g h t  moment (HM) was ca lcu la ted  as 

The d i f f e r e n c e  

HM = 1 (Height * Distance)/Total  No. o f  Bugs c71 

4. Uodulus o f  Elasticity 

Dog-bone specimens were c u t  from the elastomer samples, and neck lengths  

and thicknesses were measured. The dog-bones were s t re tched i n  an INSTRON a t  

a cross-head speed of 10.0 mm/min u n t i l  a p l o t  o f  load (kg) versus e lognat ion  

(mm) was achieved. A modulus o f  e l a s t i c i t y  (E) f o r  a g iven sample was 

ca lcu la ted  f rom a p l o t  obtained on the INSTRON us ing the  equat ion 

E = (slope o f  the p l o t  * g * length  o f  neck)/(area * Cc) c 81 
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The e lognat ion  obta ined from the  slope of t he  p l o t  i s  cor rec ted  t o  the  actual  

e lognat ion us ing a co r rec t i on  f a c t o r  - crosshead speed d i v ided  by c h a r t  speed. 

The area i n  the  equation [SI i s  ca lcu la ted  as t h e  product  o f  th ickness and 

width of t he  neck of the dog-bone; g i s  the acce le ra t i on  o f  g rav i t y ,  Cc i s  a 

conversion f a c t o r  (1 kg m/s /N, o r  32.174 lbm f t / s  / l b f ) .  

I V .  Resul ts  and Diascussi on 

2 2 

The contac t  angle measurements and ESCA r e s u l t s  o f  washed and unwashed 

samples are l i s t e d  i n  Tables I and 11, respec t ive ly .  The contact  angles f o r  

unwashed FCE samples are much lower than f o r  washed ones. A lower angle 

r e s u l t e d  f o r  t he  polyurethane a f t e r  washing. 

SEM photomicrographs are provided i n  F igure  5. SEM photomicrographs o f  

the  unwashed samples show non-homogeneous surfaces w i t h  l a rge  numbers o f  holes 

o r  i r r e g u l a r  pat terns.  

show homogeneous and smooth surfaces w i t h  small number o f  holes o r  i r r e g u l a r  

patterns. Thus, washing and r i n s i n g  process have removed the non-homogeneous 

top  l a y e r  (probably contaminants) o f  t h e  unwashed sample, and l e f t  an 

apparent ly  c lean surface. 

sur faces are  caused by a cover ing layer  on the  surface. 

o f  t he  polyurethane sample show s i m i l a r  changes as the  FCE samples, b u t  the  

changes are very  small. 

I n  contrast ,  t he  photomicrographs o f  washed samples 

So the lower contac t  angles o f  the unwashed 

SEM photomicrographs 

However, the average contac t  angle o f  washed 

polyurethane i s  lower than f o r  t h e  unwashed one. No c l e a r  cause can be 

concl  uded f rom the  SEM photomicrographs. 

0 Comparison o f  ESCA r e s u l t s  lead t o  a c l e a r e r  understanding o f  t h e  

observed changes i n  the  contact  angles due t o  washing. As shown i n  Table 11, 

elements are present on the  unwashed samples which are n o t  present  on t h e  

washed samples. Therefore, i t  can be concluded t h a t  these elements formed the  
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non-homogeneous top layer  shown i n  the SEM photomicrographs bu t  which i s  

removed by washi ng . 
The r e a s m  f o r  changes i n  the contact angles o f  washed samples can be 

explained by comparison of the  f l uo r ine  composition obtained f r o m  ESCA 

spectra. The f l u o r i n e  composit ion on a polymer surface has an impor tant  

e f f e c t  on the  contact  angle; the surface w i t h  a higher f l u o r i n e  composition 

has a lower surface energy and hence a h igher  contact  angle resu l ts .  

ca l cu la ted  atomic f r a c t i o n  of f l uo r ine  on the washed FCE surfaces are h igher  

than on unwashed ones, so t h a t  higher contact  angles resu l ted  f o r  the washed 

surfaces. The polyurethane sample shows the opposi te r e s u l t  from FCE samples; 

a very small  amount of f l u o r i n e  (0.7%) has been removed f r o m  the surface a f t e r  

washing, b u t  t h i s  i s  n o t  enough in format ion t o  exp la in  why the  smal ler  contact  

angle r e s u l t e d  a f t e r  washing. 

The 

Contact angle measurements using water/ethanol so lu t i ons  w i t h  d i f f e r e n t  

volume r a t i o s ,  f o r  sample elastomers and aluminum a r e  summarized i n  Table 111. 

Large d i f ferences are observed between FCE's, neoprene, V i  t ronR, polyurethane, 

and aluminum f o r  a h igh  water concentrat ion. 

concentrat ions o f  70% o f  higher, s i m i l a r  values o f  con tac t  angle were obta ined 

f o r  a l l  samples. These measurements cause the ext rapolated c r i t i c a l  surface 

tension f o r  a l l  samples shown i n  Figure 6 and Table I V ,  t o  be unexpectedly 

about 25 dynes/cm, which i s  c lose  t o  the  surface tens ion o f  pure ethanol. 

Although no d e f i n i t e  conclusion i s  drawn a t  the present time, one o f  t he  

p o s s i b i l i t i e s  t o  account f o r  t h i s  r e s u l t  is t h a t  ethanol p r e f e r e n t i a l l y  

adsorbs on the  low energy polymer surfaces and i n v a l i d a t e s  the  use o f  

ethanol /water so lu t i ons  t o  measure yc. 

However, a t  ethanol 

The ca lcu la ted  elemental atomic f r a c t i o n s  are l i s t e d  i n  Tables V and V I  

f o r  two d i f f e r e n t  t ake -o f f  angles. I n  general, the atomic composit ion f o r  a l l  
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t he  samples changes as the take-of f  angle changes from 20" t o  90°. Bulk 

f l u o r i n e  concentrat ions o f  FCE-A and FCE-B were reported t o  be the same (69%) 

wh i l e  FCE-C, FCE-0 and FCE-E were reported t o  be somewhat lower (66%). 

However, the surface f l u o r i n e  concentrat ions o f  FCE's ca lcu la ted  from ESCA 

spectra do no t  agree w i t h  the bu lk  composition. 

composition i n  the b u l k  and a t  the surface o f  a polymer are wel l  known. 

e Di f fe rences  i n  chemical 

Ca lcu la ted  values of the  e l a s t i c  moduli f o r  the  d i f f e r e n t  polymers are 

given i n  Table V I I .  Modulus i s  a physical p roper ty  o f  a mater ia l  so t h a t  i t  

i s  o n l y  dependent on the mater ia l  i t s e l f .  Even though the two polyurethane 

samples are s i m i l a r  chemical ly, they a re  two d i f f e r e n t  ma te r ia l s  since the  

f i l m s  were pressed a t  two d i f f e r e n t  temperatures. Thus d i f f e r e n t  moduli 

resu l ted  f o r  these samples. 

The t o t a l  number o f  i nsec ts  and ca l cu la ted  average he igh t  moments a re  

l i s t e d  i n  Table V I I I .  The r e s u l t s  are a l so  p l o t t e d  i n  Figures 7 and 8 as a 

func t ion  o f  modulus. The t o t a l  number o f  i nsec ts  c o l l e c t e d  on the c o n t r o l  

(aluminum) samples was much higher than any o f  the elastomer samples. 

However, no c o r r e l a t i o n  between average he igh t  moment o r  t o t a l  number o f  

i nsec ts  and modulus was obtained. This may be caused e i t h e r  by the technique 

used t o  c o l l e c t  insects,  o r  l i m i t e d  sampling, t h a t  i s ,  n o t  enough samples f o r  

each elastomer. The major problems with the present c o l l e c t i o n  technique are 

no con t ro l  o r  measure o f  the i n s e c t  f l u x  and the i n i t i a l  number o f  impacts. 

Since the technique o f  c o l l e c t i n g  insec ts  i s  l i m i t e d  t o  summer time, and 

w i t h  the  d i f f i c u l t y  o f  c o n t r o l l i n g  the number o f  impacts, the development o f  a 

new impact device has been started. I t  i s  b a s i c a l l y  an air-gun which cons is ts  

o f  a 1 in. pipe, a T connector, and a nozzle, arranged as shown i n  the  

s i m p l i f i e d  diagram i n  Figure 9. Compressed a i r  i s  passed through a nozzle, 

and the h igh  v e l o c i t y  e x i t  of a i r  f r o m  the nozzle creates a suc t ion  behind the  
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nozzle t h a t  induces a l a rge  i n f l o w  of a i r  through t h e  feed chute. This  l a rge  

volume of a i r  i s  accelerated as i t  f lows pas t  the nozzle c rea t i ng  a h igh  

v e l o c i t y  f l o w  o f  a i r  i n  the downstream sec t ion  o f  the  pipe. Any small ob ject ,  

such as an insect ,  t h a t  i s  placed i n  the  feed chute w i l l  be sucked i n t o  the  

pipe, accelerated i n  the  pipe, and e jected from the  end of t he  p ipe  a t  h igh 

ve loc i ty .  I n i t i a l  t e s t s  us ing polyethylene p a r t i c l e s  i n d i c a t e  t h a t  such small 

ob jec ts  a re  e jec ted  a t  h igh  ve loc i ty ,  although the  exac t  v e l o c i t y  has t o  be 

determined. 

V.  Summary 

Changes i n  the energy o f  polymer surfaces due t o  washing were detected by 

contac t  angle measurements and SEM photomicrographs. The causes o f  these 

surface energy changes were explained p a r t i a l  l y  by r e s u l t s  obta ined from ESCA 

analysis. 

A s i g n i f i c a n t  d i f fe rence between the t o t a l  number o f  i nsec ts  s t i c k i n g  on 

any elastomer sample and on the  aluminum con t ro l  sample was observed. 

However, no c o r r e l a t i o n  was obtained between the modulus of the elastomer and 

the  t o t a l  number o f  i nsec ts  s t i c k i n g  o r  the  h e i g h t  moment fo r  a g iven sample. 

There may have been l a r g e  experimental e r r o r s  in t roduced dur ing  the  road t e s t  

caused by a va r iab le  i nsec t  f l u x .  A new i n s e c t  impact ing technique i s  being 

devel oped t o  improve the  reproduci b i  1 i ty. 

V I .  Future Work 

The f o l l o w i n g  recommendations fo r  fu tu re  work are l i s t e d :  

1. Another se t  o f  contact  angle measurements w i t h  o the r  l i q u i d s  - 
poss ib l y  the  Zisman series. 

Determine the  e x i t  v e l o c i t y  of po lyethy lene p a r t i c l e s  from the  

"Air-Gun" us ing strobes, small s i z e  p a r t i c l e s ,  and a camera. 

2. 

3. Use o f  model p a r t i c l e s  and/or i n s e c t s  i n  the  Air-Gun. 
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TABLE I .  CONTACT ANGLES OF WASHED AND UNWASHED SAMPLES 

e 

A B C D E PU 

UNWASHED 76 76 78 77 78 81 

WASHED 95 96 96 91 93 71 
0 

Note: A-E a r e  the  FCE samples and PU i s  the  polyurethane sample. 
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TABLE 11. ESCA ATOMIC COMPOSITION (%) AND RATIOS OF WASHED 

UNWASHED FCE-A 

WASHED FCE-A 

UNWASHED FCE-B 

WASHED FCE-8 

UNWASHED FCE-C 

WASHED FCE-C 

UNWASHED PU 

WASHED PU 

UNWASHED FCE-A 

WASHED FCE-A 

UNWASHED FCE-B 

WASHED FCE-8 

UNWASHED FCE-C 

WASHED FCE-C 

UNWASHED PU 

WASHED PU 

AND UNWASHED ELASTOMER SAMPLES 

P h o t o p e a k  

c 1s 01s F l s  S i  2p N 1s Ca 2p s 2p 

78. a. 5 8.8 2.8 1.5 0.6 0.2 

63 3.2 33 . 0.5 

72. 9.0 14. 2.7 1.3 0.5 

64. 6.7 28 . 1.9 

73. 9.1 12. 3.4 1.6 0.4 

60. 4.0 36 . 0.2 0.2 

82. 13. 0.7 1.7 0.8 1.5 

81. 16. --- 0.4 2.4 

--- --- --- 
- -- 

--- --- --- 
- -- 

--e --- 
- -- 

--- --- 

R a t i o  

O I C  F I C  S i  I C  N I C  C a I C  SI Ca 

0.11 0.11 0.036 0.019 0.008 0.003 

0.051 0.52 0.008 - - - 
0.12 0.19 0.038 0.018 0.007 - 
0.10 0.44 0.030 - - 
0.12 0.16 0.046 0.022 0.005 - 
0.067 9.60 0.003 0.003 - - 
0.16 0.009 0.021 0.010 0.018 - 
0.20 - 0.005 0.030 - - 



TABLE I 1  I a .  CONTACT ANGLE MEASUREMENTS WITH WATER/ETHANOL SOLUTIONS 

0 

Sample 

FCE - A 

FCE - B 
FCE - C 

FCE - D 

0 FCE - E 

PU 

NE 0 P RE N E 

0 V ITON 

Water/Ethanol ( v / v )  

100/0 90/10 70/30 50/50 40/60 30/70 80/ 20 

92 85 66 50 48 40 25 

94 84 70 53 46 39 28 

93 78 64 51 48 36 --- 
96 84 65 47 46 34 23 

96 84 67 50 38 31 -- - 
70 60 48 28 23 --- - -- 
102 93 75 61 57 39 44 

103 95 76 62 55 49 39 

TABLE I I I b. SURFACE TENSION OF WATER/ETHANOL SOLUTION (6) 
c 

Water/Ethanol ( v / v )  

lOO/Q 90 / 10 70/30 50/50 40/60 30/70 80/ 20 

Surface 

(mJ/m ) 

W 

tension 72.2 51.3 36.1 30.0 28.0 27.2 25.6 
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1. 

TABLE I V .  CALCULATED CRITICAL SURFACE TENSION 

2 Sample 

FCE - A 24. 

FCE - B 24. 

C r i t i c a l  Surface Tension (rnJ/m ) 

FCE - C 

FCE - 0 
FCE - E 

PU 

NEOPRENE 

VITON 

24. 

26. 

26. 

25. 

25. 

24. 

c 



TABLE V i  ESCA ATOMIC COMPOSITION ( X )  AND RATOS DETERMINED ON 

ELASTOMER SAMPLES AT A TAKE-OFF ANGLE OF 20" 

0 

S a m p l e  

FCE - A 

FCE - B 

FCE - C 

FCE - D 

FCE - E 

PU 

NEOPRENE 

V ITON 

P ho t o p e  a k 

c 1s 0 1s F 1s S i  2p N 1s C1 2p P b  4f 

59 . 2.9 37. 0.7 

55 . 5.5 37 . 2.4 

57 . 3.7 38. 0.9 0.1 

53. 3.3 43. 0.7 

57. 5.1 36. 1.7 

0.9 81 . 17 . 
58 . 20 . -- - 22 . --- 0.6 --- 

0.4 41 . 24. 13. 20 . 0.7 --- 

--- --- --- 
--- --- --- 

--- --- 
--- --- --- 
--- --- --- 
--- --- - -- --- 

t 
S a m p l e  

FCE - A 

r, FCE - B 

FCE - C 

FCE - D 

FCE - E 

PU 

NEOPRENE 

e 

e V ITON 

0 /C F /C S i  /C N/C C l / C  Pb/C 

0.049 0.63 0.012 -- -- -- 
0.10 0.67 0.044 ' -- -- -- 
0.065 0.67 0.016 0.002 -- -- 
0.062 0.81 0.013 -- -- -- 
0.089 0.63 0.030 -- -- -- 
0.21 -- 0.011 -- -- -- 

0.010 -- 0.34 -- 0.38 -- 
0.58 0.32 0.49 0.017 -- 0.010 



TABLE V I .  ESCA ATOMIC COMPOSITION ( a )  AND RATIOS DETERMINED ON 

ELASTOMER SAMPLES AT A TAKE-OFF ANGLE OF 90" 

e 

a 

e 

e 

S a m p l e  

FCE - A 

FCE - B 
FCE - C 

FCE - D 

FCE - E 

PU 

NEOPRENE 

V ITON 

S a m p l e  

FCE - A 

FCE - 6 

FCE - C 

FCE - D 
FCE - E 

PU 

NEOPRENE 

V ITRON 

P h o t o  peak 

c 1s 0 1s F 1s S i  2p N 1s C1 2p P b  4f 

53. 3.2 33 . 0.5 

64 . 6.7 28 . 1.9 

60. 4.0 36. 0.2 0.2 0.2 --- 
59 . 4.3 36. 0.3 

60. 5.4 34. 0.7 

81 . 16. --- 0.4 2.4 

62. 20. --- 18. - 0 -  1.1 --- 
1.0 46. 23. 12. la . 0.5 --- 

-0-  --- --- 
--- --- - -- 

--- --- - -- 
--- --- --- 

--- - -- 

R a t i o  

0 /c F/C S i  /C N/C C l / C  Pb /C  

0.060 0.62 0.009 -- -- -- 
0.10 0.44 0.030 

0.067 0.60 .0.003 0.003 0.003 -- 
0.073 0.61 0.005 -- -- -- 
0.090 0.57 0.012 --- -- -- 
0.20 -- 0.005 0.030 -- -- 
0.32 -- 0.29 -- 0.018 -- 
0.50 0.26 0.39 0.011 -- 0.022 

-- -- -- 



Sampl e 

FCE - A 

FCE - B 

FCE - C 

FCE - D 

FCE - E 

TABLE V I I .  MODULUS OF ELASTICITY 

PU (1/32") 

PU (1/16") 

N EOP REN E 

VITON 

ALUMINUM ( 2 )  

Modul us o f  E l  a s t i  ci ty (ps i  1 
312. 

499. 

157 

361. 

499. 

5057. 

2615. 

1130. 

860 

1.02~10~ 



TABLE V I I I .  TOTAL NUMBER OF IMPACTED INSECTS ( N )  

AND MEAN HEIGHT MOMENT (MHM) 

Samp 1 e 

FCE - A 

FCE - B 

FCE - C 

FCE - D 

FCE - E 

PU (1/32") 

PU (1/16") 

NEOPRENE 

VITON 

ALUMINUM 

N MHM ( i n .  x 10) 

40 

48 

40 

44 

59 

48 

41 

43 

49 

65 

~~ 

26 . 
30 . 
34. 

25. 

24. 

20 . 
27 . 
37 . 
31 . 
26. 

e 
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Figure  1. L i q u i d  drop i n  contact  w i t h  s o l i d  sur face 

[e i s  t he  contact angle]. 
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Figure 2. S i m p l i f i e d  block diagram of scanning e l e c t r o n  microscope. 
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Figure 3. Simplified energy level diagram for ESCA process. 
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Simplified diagram o f  an insect collecting device. 
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Unwashed Vi t o n  Washed Viton 

Unwashed Urethane 

Figure 5. SEM photomicrographs o 

Urethane 

f elastomer surfaces. 
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Unwashed FCE-A Washed FCE-A 
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Unwashed FCE-B Washed FCE-B 

Unwashed FCE-C Washed FCE-C 



a 

e 

0 

e 

e 

Unwashed FCE-D Washed FCE-D 

Unwashed FCE-E Washed FCE-E 

Unwashed Neoprene Washed Neoprene 
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Figure 6. Cos 8 vs. surface tension o f  water/ethanol solution 

i s  a t  cos e = 13. 
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Figure 9. S impl i f ied  diagram o f  "Air-Gun". 
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